Журналы
Email: Пароль: Войти Регистрация
E-mail: anna.petrova.16.11@gmail.com

Аспирантка 1 года кафедры алгоритмической математики СПбГЭТУ «ЛЭТИ».

Статьи автора:

Используя методы тропической математики, можно упростить структуру нейронной сети. Целью настоящей работы является исследование эффективности использования тропических функций в нейронных сетях. Базовая алгебраическая структура в тропической математике --- полукольцо с выбором минимума (или максимума) в качестве сложения. Такая структура естественно возникает в работе с некоторыми нейронными сетями, например сетями с функцией активации ReLU. В рамках этого подхода произвольная кусочно-линейная функция с фиксированным типом выпуклости может быть представлена тропическим многочленом, а произвольная кусочно-линейная функция --- тропической рациональной функцией. Таким образом, слой нейронной сети с линейной преактивацией и ReLU-активацией можно рассматривать как векторнозначную тропическую рациональную функцию, которая, в свою очередь, может быть представлена двумя тропическими слоями. В работе были реализованы два тропических слоя и построены пять тропических архитектур. Обучение моделей проводилось на датасете, целью которого было оценить вероятность наличия сердечно-сосудистых заболеваний у пациентов по определенному набору характеристик. Все модели имели одинаковые гиперпараметры. Каждая из моделей обучалась в течение 100 эпох с использованием оптимизаторов Adam и SGD. Сравнение результатов показало, что наилучшей точности достигла модель со смешанной архитектурой, состоящая из двух линейных слоев с min-слоем и max-слоем между ними. Такая точность была достигнута при использовании оптимизатора Adam. Классическая модель набрала 77,3 %, а тропическая 77,7 %. С. 18-27.

Using the methods provided by tropical mathematics we can simplify the structure of a neural network, which increases its explainability, without decreasing its accuracy. This paper aims to explore the use of tropical functions in neural networks and compare their efficiency with classical ones. Theoretical framework of tropical mathematics is a semiring with idempotent addition, which is a natural approach to piecewise-linear neural networks, e.g. networks with ReLU activation. Within this approach, piecewise-linear convex function is a tropical polynomial, and general piecewise-linear functions are tropical rational functions. Thus a layer of a neural network with linear preactivation and ReLU activation can be viewed as a vector-valued tropical rational function, which in turn can be represented by two tropical layers. Two tropical layers were implemented, and five tropical architectures were constructed. The models were trained on a heart disease dataset, aiming to determine the presence of heart disease. All models had the same hyperparameters. Each of the models was trained for 100 epochs using Adam and SGD optimizers. The results of the comparison showed that the best accuracy was achieved by a mixed-architecture model using two linear layers. The comparison results showed that the best accuracy was achieved by a mixed-architecture model with two linear layers with a min-layer and a max-layer in between. This accuracy was achieved by using an Adam optimizer. The classical model scored 77.3 % and the tropical 77.7 %.

Ключевые слова: тропическая математика, нейронные сети.
Keywords: tropical mathematics, neural networks.
Для пополнения баланса выберите страну, оператора и отправьте СМС с кодом на указанный номер. Отправив одну смс, вы получаете доступ к одной статье.
Закрыть