Колебания простого жесткого маятника с предельно большими амплитудами, близкими к 180°, трактуются на основе физически оправданного приближения, заключающегося в разделении полного цикла колебаний на несколько частей. Бульшая часть почти замкнутого кругового пути груза маятника аппроксимируется лимитационным движением, а движение в малой окрестности перевернутого положения описывается с помощью линеаризованного дифференциального уравнения. Такой подход позволяет лучше понять динамику поведения нелинейных физических систем. Полученное на его основе простое аналитическое выражение для периода колебаний с предельно большой амплитудой дает значения, очень близкие к тем, что следуют из точной формулы, основанной на полном эллиптическом интеграле первого рода K(q).
Large oscillations of a simple rigid pendulum with amplitudes close to 180 degrees are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity of the inverted position is described on the basis of the linearized equation. The accepted approach provides additional insight into the dynamics of nonlinear physical systems. The final simple analytical expression gives the values for the period of large oscillations that coincide with high precision with the values given by the exact formula based on the complete elliptic integral of the first kind.
Ключевые слова: простой маятник, фазовая траектория, лимитационное движение, линеаризованное уравнение, компьютерное моделирование.
Keywords: Simple pendulum, phase trajectory, limiting motion, separatrix, linearized equation, computer simulation.