Последнее письмо Эвариста Галуа, адресованное Огюсту Шевалье, накануне (так называемой) дуэли 30 мая 1832 года (которая, пожалуй, проще и точнее была охарактеризована как убийство Альфредом, не допустившим на следующий день священника к своему старшему брату Эваристу в его последние мгновения), было написано на семи страницах и разделено на три мемуара. Первый мемуар занимает чуть меньше двух страниц. Впоследствии сей мемуар стал известен как теория Галуа (о которой, в частности, рассказал Мелвин Кирнан). Однако, Галуа продолжил своё письмо потрясающе удивительными конструкциями во втором мемуаре, который занял чуть более двух страниц. Третий (и самый длинный!) мемуар начинается на пятой странице и остаётся загадочным и нерасшифрованным, но он, несомненно, вдохновил Александра Гротендика сформулировать свою гипотезу о периодах. Письмо заканчивается абзацем о последних «главных размышлениях», касающихся «приложений теории неоднозначности к трансцендентному анализу», где Галуа преподносит нам последнюю загадку, говоря, что «мы можем тотчас же рассмотреть большое множество выражений». К сожалению, неумолимость давлеющего времени не позволила ему привести какие-либо конкретные примеры, а смогла лишь дать краткие последние инструкции, о том, что делать с письмом. Несмотря на это, многие «историки» назойливо и примитивно твердят нам (и друг другу), что мы не должны «переоценивать» значение письма, которое (вопреки их советам) красноречиво и правдиво описывалось Германом Вейлем как «самая значимая рукопись во всей истории человечества»! С. 11-26.
Évariste Galois' last letter, addressed to Auguste Chevalier, on the eve of the (so-called) duel on May 30, 1832 (which, perhaps, simpler and more accurately described by Alfred, who did not allow a priest to deprive him from the final moments on the following day with his elder brother Évariste, as murder), was written on seven pages and was divided into three memoirs. The first memoir consumes a little less than two pages. It gave rise to what has come to be known as Galois theory (as, in particular, told by Melvin Kiernan). Yet Galois went on with stunningly amazing constructions in the second memoir, which consumed a bit more than two pages. The third (and longest!) memoir begins on the fifth page and remains mysteriously unresolved, yet it undoubtedly inspired Alexander Grothendieck to formulate his period conjecture. The letter is concluded with a paragraph on the latest ``principal contemplations'', concerning ``the applications of the theory of ambiguity to transcendental analysis'', where Galois delivers his last puzzle to us, saying that ``one recognizes immediately lots of expressions to look for''. Unfortunately, the severity of the time pressure upon him permitted only succinct last instructions with no more last examples. Still and disgracefully, many ``historians'' keep on incessantly and mundanely telling us (and each other) that we ought not ``overestimate'' the significance of the letter, which was (contrary to their advice) eloquently and veraciously described by Hermann Weyl as ``the most substantial piece of writing in the whole literature of mankind''!
Ключевые слова: эссенциальная эллиптическая функция, понижение степени модулярного уравнения, проективная специальная линейная группа над простым полем, эллиптические и коэллиптические полиномы, решение общего квинтического уравнения.
Keywords: Essential elliptic function, depressing the degree of the modular equation, projective special linear group over a prime field, elliptic and coelliptic polynomials, solving the general quintic equation.
Рассматриваются простейшие компьютерные учебные модели, демонстрирующие свойства систем, способных к самоорганизации. Модели представляют собой цепочку шаров, двигающихся поступательно вдоль одной прямой. Предполагается, что при столкновении шаров действуют силы неупругой деформации, что обеспечивает диссипацию энергии. Восполнение энергии обеспечивается при столкновении со стенками, сообщающими шарам дополнительную энергию. Исследование модели в учебном процессе позволяет продемонстрировать такие свойства, как бифуркации при изменении управляющего параметра и гистерезис. Математическая простота моделей позволяет использовать их в процессе обучения, поскольку требует от обучаемых минимальных навыков программирования. С. 27-34.
In this paper we consider the simplest computer educational models that demonstrate the properties of systems capable of self-organization. The models are a pagebreak chain of balls moving progressively along a straight line. It is assumed that in the collision of the balls act inelastic deformation forces, which ensures energy dissipation. Energy replenishment is provided by colliding with the walls, which impart additional energy to the balls. The study of the model in the educational process allows us to demonstrate such properties as bifurcations by changing the control parameter and hysteresis. The mathematical simplicity of the models allows them to be used in the learning process, since they require minimal programming skills from the students.
Ключевые слова: процессы самоорганизации, математическая модель, неупругие столкновения, компьютерное моделирование.
Keywords: processes of self-organization, mathematical model, inelastic collisions, computational simulation.